
1
2
3
5
6
7
8

Table of Contents

Table of Contents
Remote Authentication

Using Remote Authentication
Using Active Directory for Remote Authentication
Different ways for Remote Authentication
Remote Authentication scenarios
Using Auto Authentication

Remote Authentication 1

Remote Authentication

Remote Authentication 2

Using Remote Authentication

Remote authentication allows you to integrate your organization's authentication system with KBPublisher.

Before you start:

We assume that you have some experience with PHP and with the system you are connecting to.

Steps to enable Remote Authentication​
Click on Settings -> Authentication Provider -> Remote
Check Enable Remote Authentication checkbox (make sure that $conf['auth_remote'] in the file admin/config.inc.php is
set to 1)
Set required values for constants in file admin/lib/custom/remote_auth.php
Customize the _remoteDoAuth function in the file admin/lib/custom/remote_auth.php to authenticate the username and
password passed to it against your own authentication system
Rename the function _remoteDoAuth to remoteDoAuth

Quick summary of the process
End user goes to site
Remote Authentication checks for valid user credentials

If auto-authentication is set, does this automatically
If auto-authentication is not set, user logs in first

KBPublisher authenticates the user .

Customizing the remoteDoAuth function
In your installation there is a folder admin/lib/custom. Within that folder is a file called remote_auth.php. This file contains the
_remoteDoAuth function. Customize this function to do authentication against your internal system by using the username and
password provided.

Here is a simple example of the function customized to authenticate against a MySQL database:

function remoteDoAuth($username, $password) {

 $user = false;

Remote Authentication 3

 $db = &DBUtil::connect($conf);

 $sql = "SELECT
 id AS 'remote_user_id',
 email, username, first_name, last_name
 FROM your_remote_users_table
 WHERE username = '%s' AND password = '%s'";
 $sql = sprintf($sql, $username, $password);
 $result = $db->Execute($sql) or die(DBUtil::error($sql, true, $db));

 // if found
 if($result->RecordCount() == 1) {
 $user = $result->FetchRow();
 $user['password'] = $password; // here you should provide not md5ing password

 // assign a priv to user (optional)
 // it is fully up to you how to determine who is authenticated and what priv to assign
 // set to off to not rewrite on login
 $user['priv_id'] = 'off';

 // assign a role to user (optional)
 // it is fully up to you how to determine who is authenticated and what role to assign
 // set to off to not rewrite on login
 $user['role_id'] = 1;
 }

 return $user;
}

 Also see examples in attached files.

Tracking logins
You can see how your remote authentication works in logs Logs/Logins

For debugging every last login is logged to a file called last_remote_login.log in the KBPublisher cache directory (APP_CACHE_DIR in
admin/config.inc.php).
For example: /home/username/ kb_cache/last_remote_login.log

Remote Authentication 4

http://www.kbpublisher.com/kb/Using-Remote-Authentication_181.html#anchor_entry_attachment

Using Active Directory for Remote Authentication

It is possible to use Remote Authentication with your LDAP server.

Before you start:

We assume that you have some experience with remote authentication, with PHP, and with lightweight directory access
protocols (LDAP).

Requirements

LDAP support in PHP is not enabled by default. You will need to enable it. For more details check PHP documentation at
http://php.net/ldap.

You may want to use Active Directory/PHP Helper library from http://adldap.sourceforge.net. If you do want to use it, download the
library and place it into the kb_installation_dir/admin/lib/custom directory.

Here is an simple example of the function customized to authenticate against a LDAP server:

function remoteDoAuth($username, $password) {

 require_once 'custom/adLDAP.php';

 $auth = false;
 if(empty($username) || empty($password)) {
 return $auth;
 }

 //create the AD LDAP connection
 $adldap = new adLDAP();

 $user = array();
 $ldap_user = $adldap->user_info($username, array(*));

 // if found, populate $user array
 if($adldap->authenticate($username, $password)){
 $user['first_name'] = $ldap_user[0]['givenname'][0];
 ...
 }

 return $user;
}

You can find more examples in kb_installation_dir/admin/lib/custom directory.

Remote Authentication 5

http://php.net/ldap
http://adldap.sourceforge.net

Different ways for Remote Authentication

There are two different types of remote authentication. It is controlled by the KB_AUTH_TYPE constant:

1. Adding/refreshing remote user data to KBPublisher and authenticate user.
2. Authentication by existing KBPublisher user.

Adding/refreshing remote user data to KB and authenticate user
KB_AUTH_TYPE = 1

On success, the authentication function remoteDoAuth should return an associative array with the following keys:

first_name
last_name
email
username
password-- as the user types when they login, that is, not encrypted
remote_user_id -- a unique userID stored in your system
role_id - (optional)
priv_id - (optional) privilege for user. If user has a privilege, he will have access to Admin Area

Authentication by existing KBPublisher user
KB_AUTH_TYPE = 2

On success, the authentication function remoteDoAuth should return.

the user_id of the user in the KBPublisher USER table (kbp_user)
OR
Associative array with keys (user_id, username), for example: array('user_id'=>7, 'username'=>'Test').

There are also other configuration variables
KB_AUTH_AREA
1 - Enabled for Public area only, remote authentication allowed on Public Area login screen
2 - Enabled for Public and Admin areas

KB_AUTH_LOCAL
0 - never try to authenticate by KBPublisher built in authentication
1 - always try to authenticate by KBPublisher built in authentication first
2 - will try to authenticate by KBPublisher built in authentication if Remote Authentication failed

KB_AUTH_LOCAL_IP
Only users with specified IP(s) are allowed to be authenticated by KBPublisher's built in authentication
it only matters when KB_AUTH_LOCAL = 1 or 2.
You can set a specific IP or an IP range. Use an "-" to separate IP ranges, and a";" to separate individual IP addresses.
For example: 127.0.0.1;210.234.12.15;192.168.1.1-192.168.255.255

KB_AUTH_REFRESH_TIME
The time, in seconds, to rewrite user data, (3600*24*30 = 30 days), works if KB_AUTH_TYPE = 1
0 - never. Once the user is created, data in kb table never updated by script
1 - on every authentication request user data in the knowledgebase will be synchronized with data provided by script.

KB_AUTH_RESTORE_PASSWORD_LINK
Here you may provide a link where your remote users can restore their password.
Set to false not to display the restore password link at all.
KBPublisher will determine whether to set your link or the built-in one.

KB_AUTH_AUTO (Using Auto Authentication)
This variable controls whether or not the user sees a login screen and has to log in to KBPublisher, or whether they are
automatically logged in.
0 - Disabled, user gets login screen
1 - Enabled, user doesn't see login screen
2 - Enabled, in debug mode. User doesn't see login screen. It allows not to block "Auto Auth" if authentication failed.
 Use only for debugging and don't forget to change back to 1 or 0 when you have authentication working.

Remote Authentication 6

https://www.kbpublisher.com/kb/entry/375/

Remote Authentication scenarios

Here are some examples/scenarios for Remote Authentication:

1. On the first authentication request the remote user is added to KBPublisher table of users.
On the second and subsequent requests he/she is authenticated by KBPublisher's built in authentication.
KB_AUTH_LOCAL = 1
KB_AUTH_TYPE = 1
KB_AUTH_REFRESH_TIME = 1.

2. Always authenticate by Remote Authentication and rewrite user data in the knowledgebase.
KB_AUTH_LOCAL = 0
KB_AUTH_TYPE = 1
KB_AUTH_REFRESH_TIME = 1

3. On the first authentication request the remote user is added to KBPublisher users.
On the second and subsequent requests the user is authenticated by remote authentication and his/her KBPublisher data is
synchronized with data provided by your script, depending on the KB_AUTH_REFRESH_TIME.
KB_AUTH_LOCAL = 0
KB_AUTH_TYPE = 1
KB_AUTH_REFRESH_TIME = 3600*24*30 (30 days).

4. KBPublisher tries to authenticate the user by built-in Authentication first.On failure KBPublisher tries to authenticate the user
by Remote Authentication.
KB_AUTH_LOCAL = 1
KB_AUTH_TYPE = 2

5. If user IP matches KB_AUTH_LOCAL_IP range, then KBPublisher tries to authenticate the user by built-in Authentication first. If
the IP does not match, or built-in authentication fails, KBPublisher tries to authenticate the user by Remote Authentication.
KB_AUTH_LOCAL = 1
KB_AUTH_LOCAL_IP = '192.168.1.1-192.168.255.255';
KB_AUTH_TYPE = 2

Adding KB_AUTH_AUTO = 1 to any of these means the user will not be asked to type in their username and password.
System will get that information automatically. See this article how to set up Auto Authentication.

Remote Authentication 7

https://www.kbpublisher.com/kb/entry/375/

Using Auto Authentication

Auto authentication allows you to automatically authenticate users.

Steps to enable Auto Authentication
Set the constant KB_AUTH_AUTO in the file admin/lib/custom/remote_auth.php to 1
Customize the _remoteAutoAuth function in the file admin/lib/custom/remote_auth.php to catch current user data and return
it
Rename the function _remoteAutoAuth to remoteAutoAuth

Customizing the remoteAutoAuth function
In your installation there is a folder admin/lib/custom. Within that folder is a file called remote_auth.php. This file contains the
_remoteAutoAuth function. Customize this function to get the current user's credentials.

On success, the function remoteAutoAuth should return an associative array with keys (username, password) for the user. For
example: array('username'=>'John', 'password'=>'Test').

Here is a simple example of the function customized using HTTP authentication:

function remoteAutoAuth() {

 $user = false;

 if(isset($_SERVER['PHP_AUTH_USER']) && isset($_SERVER['PHP_AUTH_PW'])) {
 $user = array();
 $user['username'] = $_SERVER['PHP_AUTH_USER'];
 $user['password'] = $_SERVER['PHP_AUTH_PW'];
 }

 return $user;
}

Debugging auto-remote authentication
You can debug auto-authentication by setting KB_AUTH_AUTO = 2, which allows you to continually try relogging in so that you can
fix any problems without having to start over every time. Important: Don't forget to reset this back to 1 (or 0) when you have
finished debugging.

Remote Authentication 8

Remote Authentication 9

	Table of Contents
	Remote Authentication
	Using Remote Authentication
	Using Active Directory for Remote Authentication
	Different ways for Remote Authentication
	Remote Authentication scenarios
	Using Auto Authentication

