
Using Remote Authentication

Remote authentication allows you to integrate your organization's authentication system with KBPublisher.

Before you start:

We assume that you have some experience with PHP and with the system you are connecting to.

Steps to enable Remote Authentication
Click on Settings -> Authentication Provider -> Remote
Check Enable Remote Authentication checkbox (make sure that $conf['auth_remote'] in the file admin/config.inc.php is
set to 1)
Set required values for constants in file admin/lib/custom/remote_auth.php
Customize the _remoteDoAuth function in the file admin/lib/custom/remote_auth.php to authenticate the username and
password passed to it against your own authentication system
Rename the function _remoteDoAuth to remoteDoAuth

Quick summary of the process
End user goes to site
Remote Authentication checks for valid user credentials

If auto-authentication is set, does this automatically
If auto-authentication is not set, user logs in first

KBPublisher authenticates the user .

Customizing the remoteDoAuth function
In your installation there is a folder admin/lib/custom. Within that folder is a file called remote_auth.php. This file contains the
_remoteDoAuth function. Customize this function to do authentication against your internal system by using the username and
password provided.

Here is a simple example of the function customized to authenticate against a MySQL database:

function remoteDoAuth($username, $password) {

 $user = false;

1

 $db = &DBUtil::connect($conf);

 $sql = "SELECT
 id AS 'remote_user_id',
 email, username, first_name, last_name
 FROM your_remote_users_table
 WHERE username = '%s' AND password = '%s'";
 $sql = sprintf($sql, $username, $password);
 $result = $db->Execute($sql) or die(DBUtil::error($sql, true, $db));

 // if found
 if($result->RecordCount() == 1) {
 $user = $result->FetchRow();
 $user['password'] = $password; // here you should provide not md5ing password

 // assign a priv to user (optional)
 // it is fully up to you how to determine who is authenticated and what priv to assign
 // set to off to not rewrite on login
 $user['priv_id'] = 'off';

 // assign a role to user (optional)
 // it is fully up to you how to determine who is authenticated and what role to assign
 // set to off to not rewrite on login
 $user['role_id'] = 1;
 }

 return $user;
}

 Also see examples in attached files.

Tracking logins
You can see how your remote authentication works in logs Logs/Logins

For debugging every last login is logged to a file called last_remote_login.log in the KBPublisher cache directory (APP_CACHE_DIR in
admin/config.inc.php).
For example: /home/username/ kb_cache/last_remote_login.log

Article ID: 379
Last updated: 24 Aug, 2022
Updated by: Leontev E.
Revision: 7
KBPublisher 8.0 Knowledge Management Handbook -> Single Sign On -> Remote Authentication -> Using Remote Authentication
https://www.kbpublisher.com/kb/entry/379/

2

http://www.kbpublisher.com/kb/Using-Remote-Authentication_181.html#anchor_entry_attachment
https://www.kbpublisher.com/kb/entry/379/

	Using Remote Authentication

